
TEST AUTOMATION FOR NEW GENERATION XAML WEB APPLICATIONS USING
MULTI AGENT SYSTEM

Appasami G.1, Suresh Joseph K.2, Balaji Srikaanth P3

1,3 Department of CSE, Dr. Pauls Engineering College, Villupuram, Tamilnadu, India,
Affiliated to Anna University Chennai

2Department of computer science, Pondicherry University, Pondicherry, India,
Email: 1appas_9g@yahoo.com, 2sureshjosephk@yahoo.co.in, 3srikaanth@yahoo.com

Abstract
New generation of Interactive and attractive dynamic web applications are developed by Silverlight Technology. It
is developed by Microsoft on Dot Net 3.5 Frame work using eXtended Application Markup Language (XAML). User
Interface Test Automation for Silverlight Applications plays a vital role in software industry; especially User Interface
Test Automation (UITA) in new technology like Silverlight is a challenging task because of its high security and
low accessibility. Agent Technology is intermediate software that provides a better bridge between User Interface
Test Automation and Silverlight applications. There are many different software agents for each group of controls
to do User Interface Test Automation. For example button control agent will take care of all buttons in User
Interface Test Automation. In this paper we present the XAML User Interface test automation using Multi Agent
System. The main goal of Test Automation for New Generation XAML Web Applications Using Multi Agent System
are to reduce cost and time to perform User Interface Test Automation.

Key words: - User Interface, Test Automation, Silverlight XAML Applications and Multi Agent system Test
Automation.

I. INTRODUCTION

Today world is in need of sophisticated interactive
and attractive web applications for users. Silverlight is
one of the new technologies to provide such web
controls with maximum security. Silverlight applications
are used to create platform independent, browser
independent interactive and attractive web applications
with Dot net supporting languages. Silverlight is
Microsoft’s new cross browser or delivering richer
interactive applications to users over the web.
Silverlight 2.0 is Microsoft’s second release of the
Silverlight platform [18][19]. Silverlight 2’s biggest
change from Silverlight 1.0 is the inclusion of a
compact version of the .NET Framework, complete with
the .NET Framework 3.0 Common Language Runtime.
By adding .NET to Silverlight, Microsoft makes it easy
for .NET developers to reuse their existing
programming skills, collaborate with designers, and
quickly create rich applications for the Web. One of the
key benefits of Silverlight 2 is that it can execute any
.NET language, including C# and VB.NET [17][18].

Silverlight 2 ships with a “lightweight" version of
the full .NET Framework, which features, among other
classes, extensible controls, XML Web Services,
networking components, and LINQ APIs. This class
library is a subset of the .NET Framework’s Base Class

Library, which enables the Silverlight plug-in to be a
fast and small download. In addition to the .NET
Framework classes, Silverlight 2 also ships with a
subset of the WPF UI programming model, including
support for shapes, documents, media, and WPF
animation objects [15][18][19].

Agents are very useful to perform particular task
by observing the environment and to react on
environment. Agents will act as domain experts in UI
Test Automation. To reduce the work load of Test
Automation we are going to use Multi Agent System
(MAS).Each agent will observe the environment and
react on the environment by perception. Each Agent
plays a vital role in UI Test Automation. For example
text box agent will take care of all text boxes. It will
act as an inter mediator for UI Test Automation and
Silverlight applications. Agents will decide themselves
to satisfy their design objectives. Agents are best in
splitting record values and send particular values to
particular agents. Each agent will take care of group
of similar controls. So we can say agents are Inter
mediator in UI Test Automation of Silverlight
applications.

6 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

II. SILVERLIGHT
Silverlight means eXtented Application Markup

Language (XAML). It is a Graphical User Interface
Design Language (GUIDL). Silverlight is Microsoft’s
new cross browser or delivering richer interactive
applications to users over the web. Silverlight 2.0 is
Microsoft’s second release of the Silverlight platform.
Silverlight is a Microsoft .NET new UI Language for
attractive web applications. Silverlight is developed my
Microsoft on Dot Net 3.0 Frame work. So Silverlight
provides security up to the level of Dot Net 3.0 Frame
work. But Silverlight controls are written by a language
called XAML. Silverlight 2 ships with a "lightweight"
version of the full .NET Framework, which features,
among other classes, extensible controls, XML Web
Services, networking components, and LINQ APIs.

Advantages of Silverlight are:
Micro Soft new technology for web

Extension of ASP.NET

Improved visualization

XAML language for UI description

Rich Interactive & Attractive Web
Applications

work in all platforms and in all browsers

Animated Movies can be sent to client
with compressed data

Rich Multimedia, Audio, Video &
Animation Support

Developing device Independent
components

Combined work of Flash and .Net

write-once-run-everywhere

WPF-subset and .NET-subset

III USER INTERFACE TEST AUTOMATION
Testing of UI is always challenging and has been

mostly manual till now. In the next generation of MES
applications the testing of GUI needs to be automated
as it will save lot of man-hours that is lost in manual
testing also it will catch the defects early on in the
cycle.

UI Test Automation is a combined process of UI
Testing and UI Automation. The data flow of UI Test
Automation is shown in figure 1. Usability Testing is a
mode of testing a particular product for its compatibility
in terms of use. GUI testing is a commonly known form

of Usability Testing of software or website. It is also
known as User Interface Testing. GUI testing is a
performance related assessment of a software or
website in terms of ease of use, versatility, friendliness
with focus on the target audience, visual impact and
the approach and time taken to progress into the
specific purpose.

UI Test Automation is a process of doing the
testing of the application using appropriate tools and
following various testing methodology. Different tools
are available from various vendors with concentration
on different type of testing. But the fact also remains
that the blending of manual and automated testing
methods is the best way to test any application. Testing
Automation should concentrate on the following factors:
Test process improvements, requirement definition,
feasibility, interface testability, maintenance and
Reusability.

The Existing system requires a lot of manpower
and UI Test Automation time is more. Silverlight is new
Microsoft technology and there is no proper Software
for UI Test Automation. This system is developed in
such a way that the testers can do UI Test Automation
in user – friendly manner.

The Benefits of Software Test Automation Test
Automation has a lot of benefits like cost, time and
reducing man power etc. Most software development
and testing organizations are well aware of the benefits
of test automation [12] [13]. A quick glance at the Web
sites of any test automation tool vendor will point out
a number of the key benefits of test automation. Some
of these benefits include:

A. Reduced test execution time and cost:
Automated tests take less time to execute than manual
tests, and can generally execute unattended. A tester
must simply start the test, and then analyze the results
when the test is completed [3] [4].

B. Increased test coverage on each testing cycle:
Automated tests can allow testing teams to execute
large volumes of tests against each build of their
application, achieving a level of coverage that would
not be possible with manual testing. This increased
coverage can help teams uncover bugs in existing
functionality much more quickly than through manual
testing [5][6].

Appasami et al : Test Automation for New Generation XAML Web Applications... 7

C. Increased value of testing: So long as
applications are meant for human end users, test
automation will never entirely replace the need for
human testers. No matter how sophisticated test
automation tools become, they will never be as good
as human testers at finding bugs in an application.

To one camp it is software testing performed
without planning and documentation. The tests are
intended to be run only once, unless a defect is
discovered. techniques. By freeing manual testers from
having to execute repetitive, mundane tests, test
automation enables them to focus on using their
creativity, knowledge, and instincts to discover
important bugs [6] [7].

D. Reduced manual work: Human beings gets tired
by doing repeated works more times. But commuters
will not tired by doing repeated works more times. User
Interface test automation always reduce the manual
testing time by automating test process [6] [7].

Fig. 1. UI Test Automation Data flow for text box.

Advantages of User Interface Test Automation
are:

Improved visualization by Micro Soft Dot
Net Silverlight

Online UI Test Automation

Dot Net Silverlight Applications User
Interface Testing

Testing User Interface with Business logic

More Secured page User Interface
Testing

Improves the quality of the Applications

Manual testing is reduced

Permutation and combinational test cases
testing and automation

Cost and Time is reduced

Three layers(UI/Business/Data) testing
and automation

Improves and helps in testing

Emerging new technology testing and
automation

Accessibility-Testing-Automation-Imputati
on

Checks all possible test cases

Convert data from XML/Excel To
Database Through User Interface

User Interface Testing and Automation

IV. AGENT TECHNOLOGY
Agents are autonomous, computational entities

that can be viewed as perceiving their environment
through sensors and acting upon their environment
through effectors. To say that they are autonomous
means that to some extent they have control over their
behavior and can act without the intervention of
humans and other systems.

Intelligent indicates that the agents pursue their
goals and execute their tasks such that they optimize
some given performance measures. It means that they
operate flexibly and rationally in a variety of
environmental circumstances. Interacting indicates that
the agents may be affected by other agents or possibly
by humans in pursuing their goals and executing their
tasks. Interaction can take place indirectly through the
environment in which they are embedded.

Advantages of Agents in Multi agent systems are:
Cooperative agents

goal oriented

Decision Support

Task sharing among agents

Constrains satisfaction

Communication and planning among
agents

Coordination and cooperation

The main characteristics of agents in UI Test
Automation can be identified as follows:

R e c o rd s

In p u t F ile

S e t o f d a ta

U I Te st A u to m a tio n

Te x t b o x h a n d le r

Te x t b o x 2 Te x t b o x 1 Te x t b o x n

8 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

System control is distributed to agents

Data is decentralized

Data is partitioned and sent to respective
agents

each agent takes care of their data

Computation is asynchronous

V AGENT BASED UI TEST AUTOMATION FOR
SILVERLIGHT APPLICATIONS

Any work can be easily done by domain experts
and particular agents in real life. Similarly our User
Interface Test Automation Agents (UITAA) will take
care of UI Test Automation of Silverlight Applications.
The whole UI Test Automation can be split into several
modules based on their functionality. They are UI
Accessibility, UI Test, UI Automation and UI Test
Automation as shown in figure 2.

Fig. 2. Components of UI Test Automation.

Fig. 3. Agent based UI Test Automation Data flow.

The data flow of the Agent based UI Test
Automation is shown in figure3. UI Test and UI
Automation are combined to perform UI Test
Automation with the help of multi agent system.

VI. IMPLEMENTATION
Agent based UI Test Automation process for

Silverlight applications are implemented as shown in
figure4. Our new Agent Based User Interface Test
Automation for Silverlight Applications (ABUITASA) gets
input record from Excel file. Each record is sent to
agents. The agents will split the record and they will
send particular data to particular agents to perform UI
Test Automation.

The Implementation of Agent Based User
Interface Test Automation for Silverlight Applications
(ABUITASA) is done in .NET 3.5 framework with
C#.NET, Silverlight, XAML, Excel and Visual studio
2008.

The part of the code for Agent Based User
Interface Test Automation for Silverlight Applications is
given tin figure5. The textbox_agent is used to pass
the values to text boxes and the button_agent is used
to perform click events.The supplied records are split
into data and distributed to particular agents. The
textbox_agent is the responsible agent for all text boxes
to set the value for text box. Similarly the button-agent
is responsible for button actions.

Fig. 4. UI Test Automation Process.

s

t

A G E N T S

U S E R IN T E R FA C E
A C C E S S IB IL IT Y

U S E R IN T E R FA C E
T E S T

U S E R IN T E R FA C E
T E S T A U T O M AT IO N

D ATA TO O U T P U T
F IL E / D B

D ATA F R O M
IN P U T F IL E / D B

S TAT U S
R E P O R T

U S E R IN T E R FA C E
A U T O M AT IO N

Appasami et al : Test Automation for New Generation XAML Web Applications... 9

public void TestMethod1()
{
Process process = System.Diagnostics.Process.Get
ProcessesByName("iexplore").First();
BrowserInstance= System.Windows.Automation.Auto
mationElement.FromHandle(process.MainWindowHandle);
TreeWalker tw1 = new TreeWalker(new PropertyCondition
(AutomationElement.AutomationIdProperty, "TextBox"));
AutomationElement searchTextBox = tw1.GetFirst
Child(browserInstance);
TreeWalker tw2 = new TreeWalker(new PropertyCondition
(AutomationElement.AutomationIdProperty, "Button"));
AutomationElement searchTextBox =
tw2.GetFirstChild(browserInstance);
SilverlightApp app = AvtiveBrowser.silverlightAppas()[0];
app.agent.textbox_agent<TextBox>(“TBox1”).Text= ”Appasami”;
app.agent.textbox_agent <TextBox>(“TBox2”).Text=
”109-pk street Kalapet”;
app.agent.textbox_agent <TextBox>(“TBox3”).Text=”Pondicherry”;
app.agent.textbox_agent <TextBox>(“TBox4”).Text=”India”;
app.agent.textbox_agent
<TextBox>(“TBox5”).Text=”9786554175”;
app.agent.textbox_agent
<TextBox>(“TBox6”).Text=”appas_9g@yahoo.com” ;
app.agent.button_agent @PRO = <Button>(“ADD”).User.Click();
}

Fig. 5. Sample code for Agent based UI Test
Automation of Silverlight application.

Sample code for Agent based UI Test Automation
of Silverlight application is given in figure 5. Initially we
have to create one process to get the window handle
to control the page. We should create browser handle
using window handle to control the window elements.
Tree walker entity is created to find a particular element
in the web page. Figure5 shows how the values are
passed to particular controls through particular agents.
For example textbox_agent and button_agent takes
care of group of text boxes and buttons.

VII. CONCLUSION
Agents fill the gap between User Interface Test

Automaton and Silverlight applications. Each agent is
expert to handle particular type of controls. Agents are
simplifies our User Interface Test Automaton. The text
box agent is takes care of all text box controls in
Silverlight applications to perform User Interface Test
Automaton. User Interface Test Automaton plays a vital
role in reducing cost, time and man power. It increases
the quality of the software.

VIII. FUTURE WORK
In future Multi Agent System User Interface Test

Automaton for moonlight applications in Linux

environment will be developed. User Interface Test
Automaton will reduce man power completely in future.

REFERENCES
[1] Appasami.G and Suresh Joseph. K, 2009 “User

Interface Accessibility and Test Automation for
Silverlight Applications", International Journal of
Computational Intelligence Research, Research India
publications, Vol. 5, No. 2.

[2] Appasami. G and Suresh Joseph. K, Oct 2009
“Performance analysis of various user interface test
automation for Silverlight applications”, International
Journal of Computer and Electrical Engineering,
IACSIT, Vol. 1, No. 4 , pages:475-480.

[3] Appasami. G and Suresh Joseph. K, Oct 2009
“Comparative Analysis of Security and Accessibility of
Silverlight XAML with Other User Interface Languages”,
International Journal of Computer Intelligence
Research, Research India publications, Vol. 1, No. 4,
pages:490-495.

[4] Appasami.G and Suresh Joseph.K, 2009 “Device
Independent Visual components using Silverlight”,
International Engineering and Technology Journal of
Advanced Computations, IETECH Publications, ISSN:
0973-8096, Vol. 3, No. 1, pp. 6-13.

[5] Appasami. G and Suresh Joseph. K, 2009 “Automation
Peer – User Interface Test Automation for Silverlight
Applications”, IETECH Journal of Advanced
Computations,Vol. 3, No. 2.

[6] Anna Derezinska and Tomasz Malek, June 2007
“Experiences in Testing Automation of a Family of
Functional- and GUI-similar Programs”, International
Journal of Computer Science & Applications,
Technomathematics Research Foundation, Vol. 4, No.
1, pp.13-26.

[7] Zhu Xiaochun, Zhou Bo, Li Juefeng and Gao Qiu, July
2008 “A test automation solution on GUI functional
test”, IEEE Conference on Software Maintenance ,
6(2): pp: 1413-1418.

[8] Xie Q. and Memon A. M., Feb 2007 “Designing and
comparing automated test oracles for GUI-based
software applications,” ACM Transactions on Software
Engineering and Methodology, Vol. 16, No. 1, pp. 1-4.

[9] Memon A. M., September 2007 “An event-flow model
of GUI-based applications for testing,” IEEE conference
on Software Testing, Verification and Reliability, Vol.
17, No. 3, pp. 137-157.

[10] Memon A. M., Pollack M. E., and Soffa M. L. Feb.
2001. “Hierarchical GUI test case generation using
automated planning”. IEEE Transactions on Software
Engineering, pages: 144–155, Feb. 2001.

10 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

[11] White L, Almezen H. October 2000 “Generating test
cases for GUI responsibilities using complete
interaction sequences”. Proceedings of the
International Symposium on Software Reliability
Engineering, 8–11. IEEE Computer Society Press:
Piscataway, NJ, 2000; 110–121.

[12] White L, Almezen H, Alzeidi N. November 2001
“User-based testing of GUI sequences and their
interaction”, Proceedings on Software Reliability
Engineering. IEEE Computer Society Press:
Piscataway, NJ, 2001; 54–63. 8–11.

[13] Memon A, Nagarajan A, Xie Q. 2005 “Automating
regression testing for evolving GUI software”. Journal
of Software Maintenance and Evolution: Research and
Practice; 17(1):27–64.

[14] Memon A. M. and Xie. Q. 2005 “Studying the
fault-detection e.ectiveness of GUI test cases for
rapidly evolving software”. IEEE Transactions on
Software Engineering, 31(10):884–896.

[15] Xie Q. and Memon A. M. 2007 “Designing and
comparing automated test oracles for GUI-based
software Applications”. ACM Trans on Software
Engineering and Methodology, 16(1):4.

[16] Appasami.G and Suresh Joseph. K, June 2009
“Automation Peer – User Interface Test Automation for
Silverlight Applications”, IETECH Journal of Advanced
Computations, India.

[17] Sycara K. P. and Wollridge M., 1998 “Proceedings of
the Second International Conference on Autonomous
agents”, Association for Computing Machinary, Inc.
(ACM).

[18] Demazeau Y., 1998 “Proceedings of the third
International Conference on Multi-Agent Systems”,
ICMAS-98, IEEE Computer Society.

[19] Gerhard Wheiss, 1999 “Multiagent Systems”, the MIT
Press.

[20] Fewster, 1999 “Software Test Automation”, Addison
Wesley.

[21] Kanglin Li and Mengqi Wu, 2005 “Effective GUI Test
Automation: Developing an Automated GUI Testing
Tool ”, SYBEX Inc.

[22] Kanglin Li and Menqi Wu, 2004 “Effective Software
Test Automation: Developing an Automated Software
Testing Tool” ISBN:0782143202 Sybex Inc.

[23] Tom Arnold, Dominic Hopton, Andy Leonard and Mike
Frost, 2007 “Professional Software Testing with Visual
Studio® 2005 Team System”, Wiley Publishing, Inc.

[24] Elfriede Dustin, 2003 “Effective Software testing”,
Pearson Education Inc.

[25] Brad Dayley and Lisa DaNae Dayley, 2008
“Silverlight 2 Bible”, Wiley Publishing, Inc., 2008.

[26] Matthew MacDonald, “Silverlight 2 Visual Essentials”
Firstpress.

[27] http://www.silverlight.net

[28] http://code.msdn.microsoft.com/silverlightut

[29] http://silverlight.net/learn/tutorials/controls.aspx

[30] http://www.jeff.wilcox.name/2008/03/silverlight2-unit-tes
ting

[31] http://msdn.microsoft.com/en-us/library/
cc645045(VS.95).aspx

[32] http://weblogs.asp.net/scottgu/archive/2008
/04/02/unit-testing-with-silverlight.aspx

[33] http://dotnetslackers.com/Patterns_and_Practices/UI_
Automation_Testing_with_UIA_Veify.aspx

[34] http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.
htm?info/rzakl/rzaklintroadvantages.htm

[35] http://artoftestinc.blogspot.com/2008/08/automated-test
ing-of-silverlight.html

[36] http://it.toolbox.com/wiki/index.php/Oracle_11G_New_
Features

[37] http://www.adp-gmbh.ch/ora/misc/features.html

[38] http://www.codeguru.com/forum/archive/index.php/t-20
4260.html

Mr. G. Appasami received
his Master of Science degree in
Mathematics, Master of
Computer Applications and
Master of Technology in
Computer Science and
Engineering from Pondicherry
University, Pondicherry, India.

Currently he is working as Assistant Professor in the
Department of Computer Science and Engineering, Dr.
Pauls Engineering College, Villupuram, Tamil Nadu,
India, afiliated to Anna University Chennai. His Area of
interests includes image processing and web
technology.

Appasami et al : Test Automation for New Generation XAML Web Applications... 11

